Fostering Young Children’s Spatial Thinking

An important but often neglected aspect of early mathematics

Susan C. Levine
University of Chicago

AGI Research Conference
June 29-30, 2011
Importance of Early Mathematics

• Children who enter kindergarten behind in math tend to stay behind (Duncan et al., 2007)

• Math levels at kindergarten entry predict reading as well as math achievement through at least 5th grade (Duncan et al., 2007)

• Strong math skills provide the foundation for success in the STEM disciplines
Most Important Aspects of Early Math

• Number and Operations
• Geometry and Spatial Relations

NRC REPORT, 2009: Mathematics Learning in Early Childhood: Pathways to Excellence and Equity
Spatial Thinking Is Important to Performance in STEM Disciplines

Geoscience
Engineering
Physics
Chemistry
Biology
Mathematics
Mean Spatial Scores by Occupation
(adapted from Wai, Lubinski, & Benbow, 2009)
Spatial Learning in the Early Years

• Largely limited to identifying shapes
• Can be much more ambitious
 – Young children can acquire spatial visualization skills that are important in STEM
 – By engaging in spatial activities
 – By hearing and acquiring spatial language
Longitudinal Language Study Database for our studies

• Diverse sample of parent-child dyads followed longitudinally.
 – 30 boys; 28 girls
• Dyads observed at home for 90 minutes every four months starting at 14 months of age.
Study 1: Puzzle Play

• All episodes of puzzle play between 26 and 46 months were identified and coded
• Question: Is early puzzle play associated with later spatial visualization, as assessed by a mental rotation test?
Parent-Child Puzzle Interaction

Video will be shown
Mental Transformation Task
(Levine, Huttenlocher, Taylor & Langrock, 1999)

• Administered when children were 54 months old

• Assesses children’s ability to mentally transform shapes.

• Child asked to select the shape the pieces make.
Children who played with puzzles scored higher on the mental rotation task.

Levine, Ratliff, Cannon, & Huttenlocher, under review
Study 2: Relation Between Spatial Language and Spatial Thinking

• Question: Does parent spatial language use predict children’s later spatial skill?

• Coded all parent and child uses of:
 – Shape terms (e.g., square, circle)
 – Dimensional adjectives (e.g., tall, short, wide, narrow)
 – Spatial features (e.g., curved, straight, corner, edge)
Spatial Language Use Shows Large Individual Variations

- On average, children produced 74 spatial words (SD= 46; **Range 4-191**) spatial words across 9 sessions (13.5 hours).

- On average, parents produced 167 spatial words (SD= 121; **Range 5-525**) spatial words across 9 sessions (13.5 hours).

(Pruden & Levine, In Press)
Parents’ Use of Spatial Language Can Make a Difference

Parent Spatial Tokens \rightarrow Child Mental Transformation Scores $\beta = .53^*$

Child Spatial Tokens \rightarrow Parent Spatial Tokens $\beta = .91^{***}$
Child Spatial Tokens \rightarrow Child Mental Transformation Scores $\beta = .42^*$

Parent Spatial Tokens \rightarrow Child Mental Transformation Scores $\beta = .15$

$N = 52; \; ^* p \leq 0.05; \; ^{**} p \leq 0.01; \; ^{***} p \leq 0.001$
Summary: Study 2 Findings

- Parents’ use of spatial language predicts children’s use of spatial language,
- Children’s use of spatial language in turn predicts their spatial visualization skills.
An Additional Finding

• When parents spatial language is accompanied by gesture, this is particularly predictive of children’s use of spatial language (Cartmill, Pruden, Levine, & Goldin-Meadow, 2009)

“It’s a circle”
Implications: Two Ways Parents Can Foster Children’s Spatial Learning

• Engage children in puzzle play
• Talk to children about spatial relationships—sizes, shapes, and spatial features and use gestures with this talk
Early Spatial Learning

• Helps prepare children for success in math and science
"You have to solve this problem by yourself. You can't call tech support."
Acknowledgements...

Thanks to participating parents and children!

Dedicated research assistants

This research was supported by...
• NSF, Spatial Intelligence and Learning Center (SILC) Grant #SBE-0541957
• NIH-NICHD Grant #P01HD040605